Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561223

RESUMO

Glomerular filtration relies on the type IV collagen (ColIV) network of the glomerular basement membrane, namely, in the triple helical molecules containing the α3, α4, and α5 chains of ColIV. Loss of function mutations in the genes encoding these chains (Col4a3, Col4a4, and Col4a5) is associated with the loss of renal function observed in Alport syndrome (AS). Precise understanding of the cellular basis for the patho-mechanism remains unknown and a specific therapy for this disease does not currently exist. Here, we generated a novel allele for the conditional deletion of Col4a3 in different glomerular cell types in mice. We found that podocytes specifically generate α3 chains in the developing glomerular basement membrane, and that its absence is sufficient to impair glomerular filtration as seen in AS. Next, we show that horizontal gene transfer, enhanced by TGFß1 and using allogenic bone marrow-derived mesenchymal stem cells and induced pluripotent stem cells, rescues Col4a3 expression and revive kidney function in Col4a3-deficient AS mice. Our proof-of-concept study supports that horizontal gene transfer such as cell fusion enables cell-based therapy in Alport syndrome.


Assuntos
Nefrite Hereditária , Podócitos , Camundongos , Animais , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Podócitos/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Membrana Basal Glomerular/metabolismo , Células-Tronco/metabolismo
2.
Nat Cell Biol ; 25(10): 1406-1407, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37798544
3.
Biol Reprod ; 109(4): 533-551, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37552049

RESUMO

Niche-derived growth factors support self-renewal of mouse spermatogonial stem and progenitor cells through ERK MAPK signaling and other pathways. At the same time, dysregulated growth factor-dependent signaling has been associated with loss of stem cell activity and aberrant differentiation. We hypothesized that growth factor signaling through the ERK MAPK pathway in spermatogonial stem cells is tightly regulated within a narrow range through distinct intracellular negative feedback regulators. Evaluation of candidate extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK)-responsive genes known to dampen downstream signaling revealed robust induction of specific negative feedback regulators, including Spry4, in cultured mouse spermatogonial stem cells in response to glial cell line-derived neurotrophic factor or fibroblast growth factor 2. Undifferentiated spermatogonia in vivo exhibited high levels of Spry4 mRNA. Quantitative single-cell analysis of ERK MAPK signaling in spermatogonial stem cell cultures revealed both dynamic signaling patterns in response to growth factors and disruption of such effects when Spry4 was ablated, due to dysregulation of ERK MAPK downstream of RAS. Whereas negative feedback regulator expression decreased during differentiation, loss of Spry4 shifted cell fate toward early differentiation with concomitant loss of stem cell activity. Finally, a mouse Spry4 reporter line revealed that the adult spermatogonial stem cell population in vivo is demarcated by strong Spry4 promoter activity. Collectively, our data suggest that negative feedback-dependent regulation of ERK MAPK is critical for preservation of spermatogonial stem cell fate within the mammalian testis.


Assuntos
Células-Tronco Adultas , MAP Quinases Reguladas por Sinal Extracelular , Masculino , Camundongos , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Retroalimentação , Diferenciação Celular/fisiologia , Espermatogônias/metabolismo , Células-Tronco Adultas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mamíferos/metabolismo
4.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333272

RESUMO

Decoding the gene regulatory mechanisms mediating self-renewal of hematopoietic stem cells (HSCs) during their amplification in the fetal liver (FL) is relevant for advancing therapeutic applications aiming to expand transplantable HSCs, a long-standing challenge. Here, to explore intrinsic and extrinsic regulation of self-renewal in FL-HSCs at the single cell level, we engineered a culture platform designed to recapitulate the FL endothelial niche, which supports the amplification of serially engraftable HSCs ex vivo. Leveraging this platform in combination with single cell index flow cytometry, serial transplantation assays, and single cell RNA-sequencing, we elucidated previously unrecognized heterogeneity in immunophenotypically defined FL-HSCs and demonstrated that differentiation latency and transcriptional signatures of biosynthetic dormancy are distinguishing properties of self-renewing FL-HSCs with capacity for serial, long-term multilineage hematopoietic reconstitution. Altogether, our findings provide key insights into HSC expansion and generate a novel resource for future exploration of the intrinsic and niche-derived signaling pathways that support FL-HSC self-renewal.

5.
Nat Commun ; 14(1): 2018, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037837

RESUMO

Aging associated defects within stem cell-supportive niches contribute towards age-related decline in stem cell activity. However, mechanisms underlying age-related niche defects, and whether restoring niche function can improve stem cell fitness, remain unclear. Here, we sought to determine whether aged blood stem cell function can be restored by rejuvenating their supportive niches within the bone marrow (BM). We identify Netrin-1 as a critical regulator of BM niche cell aging. Niche-specific deletion of Netrin-1 induces premature aging phenotypes within the BM microenvironment, while supplementation of aged mice with Netrin-1 rejuvenates aged niche cells and restores competitive fitness of aged blood stem cells to youthful levels. We show that Netrin-1 plays an essential role in maintaining active DNA damage responses (DDR), and that aging-associated decline in niche-derived Netrin-1 results in DNA damage accumulation within the BM microenvironment. We show that Netrin-1 supplementation is sufficient to resolve DNA damage and restore regenerative potential of the aged BM niche and blood stem cells to endure serial chemotherapy regimens.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Animais , Camundongos , Netrina-1/genética , Células-Tronco Hematopoéticas/fisiologia , Células da Medula Óssea , Envelhecimento/genética , Nicho de Células-Tronco
6.
Dev Cell ; 58(12): 1037-1051.e4, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37119815

RESUMO

The hematopoietic niche is a supportive microenvironment composed of distinct cell types, including specialized vascular endothelial cells that directly interact with hematopoietic stem and progenitor cells (HSPCs). The molecular factors that specify niche endothelial cells and orchestrate HSPC homeostasis remain largely unknown. Using multi-dimensional gene expression and chromatin accessibility analyses in zebrafish, we define a conserved gene expression signature and cis-regulatory landscape that are unique to sinusoidal endothelial cells in the HSPC niche. Using enhancer mutagenesis and transcription factor overexpression, we elucidate a transcriptional code that involves members of the Ets, Sox, and nuclear hormone receptor families and is sufficient to induce ectopic niche endothelial cells that associate with mesenchymal stromal cells and support the recruitment, maintenance, and division of HSPCs in vivo. These studies set forth an approach for generating synthetic HSPC niches, in vitro or in vivo, and for effective therapies to modulate the endogenous niche.


Assuntos
Nicho de Células-Tronco , Fatores de Transcrição , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Endoteliais/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Regulação da Expressão Gênica
7.
bioRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37034724

RESUMO

Transition between activation and quiescence programs in hematopoietic stem and progenitor cells (HSC/HSPCs) is perceived to be governed intrinsically and by microenvironmental co-adaptation. However, HSC programs dictating both transition and adaptability, remain poorly defined. Single cell multiome analysis divulging differential transcriptional activity between distinct HSPC states, indicated for the exclusive absence of Fli-1 motif from quiescent HSCs. We reveal that Fli-1 activity is essential for HSCs during regenerative hematopoiesis. Fli-1 directs activation programs while manipulating cellular sensory and output machineries, enabling HSPCs co-adoptability with a stimulated vascular niche. During regenerative conditions, Fli-1 presets and enables propagation of niche-derived Notch1 signaling. Constitutively induced Notch1 signaling is sufficient to recuperate functional HSC impairments in the absence of Fli-1. Applying FLI-1 modified-mRNA transduction into lethargic adult human mobilized HSPCs, enables their vigorous niche-mediated expansion along with superior engraftment capacities. Thus, decryption of stem cell activation programs offers valuable insights for immune regenerative medicine.

8.
Blood ; 141(5): 503-518, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35981563

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive and often incurable disease. To uncover therapeutic vulnerabilities, we first developed T-ALL patient-derived tumor xenografts (PDXs) and exposed PDX cells to a library of 433 clinical-stage compounds in vitro. We identified 39 broadly active drugs with antileukemia activity. Because endothelial cells (ECs) can alter drug responses in T-ALL, we developed an EC/T-ALL coculture system. We found that ECs provide protumorigenic signals and mitigate drug responses in T-ALL PDXs. Whereas ECs broadly rescued several compounds in most models, for some drugs the rescue was restricted to individual PDXs, suggesting unique crosstalk interactions and/or intrinsic tumor features. Mechanistically, cocultured T-ALL cells and ECs underwent bidirectional transcriptomic changes at the single-cell level, highlighting distinct "education signatures." These changes were linked to bidirectional regulation of multiple pathways in T-ALL cells as well as in ECs. Remarkably, in vitro EC-educated T-ALL cells transcriptionally mirrored ex vivo splenic T-ALL at single-cell resolution. Last, 5 effective drugs from the 2 drug screenings were tested in vivo and shown to effectively delay tumor growth and dissemination thus prolonging overall survival. In sum, we developed a T-ALL/EC platform that elucidated leukemia-microenvironment interactions and identified effective compounds and therapeutic vulnerabilities.


Assuntos
Células Endoteliais , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Células Endoteliais/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Comunicação Celular , Técnicas de Cocultura , Microambiente Tumoral
9.
Biomolecules ; 12(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36551265

RESUMO

Endothelial cells in vivo are subjected to a wide array of mechanical stimuli, such as cyclic stretch. Notably, a 10% stretch is associated with an atheroprotective endothelial phenotype, while a 20% stretch is associated with an atheroprone endothelial phenotype. Here, a systems biology-based approach is used to present a comprehensive overview of the functional responses and molecular regulatory networks that characterize the transition from an atheroprotective to an atheroprone phenotype in response to cyclic stretch. Using primary human umbilical vein endothelial cells (HUVECs), we determined the role of the equibiaxial cyclic stretch in vitro, with changes to the radius of the magnitudes of 10% and 20%, which are representative of physiological and pathological strain, respectively. Following the transcriptome analysis of next-generation sequencing data, we identified four key endothelial responses to pathological cyclic stretch: cell cycle regulation, inflammatory response, fatty acid metabolism, and mTOR signaling, driven by a regulatory network of eight transcription factors. Our study highlights the dynamic regulation of several key stretch-sensitive endothelial functions relevant to the induction of an atheroprone versus an atheroprotective phenotype and lays the foundation for further investigation into the mechanisms governing vascular pathology. This study has significant implications for the development of treatment modalities for vascular disease.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Mecanotransdução Celular , Estresse Mecânico , Humanos , Células Cultivadas , Biologia de Sistemas , Fatores de Transcrição/metabolismo
10.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430649

RESUMO

Ovarian cancer (OC) is a heterogeneous disease characterized by its late diagnosis (FIGO stages III and IV) and the importance of abdominal metastases often observed at diagnosis. Detached ovarian cancer cells (OCCs) float in ascites and form multicellular spheroids. Here, we developed endothelial cell (EC)-based 3D spheroids to better represent in vivo conditions. When co-cultured in 3D conditions, ECs and OCCs formed organized tumor angiospheres with a core of ECs surrounded by proliferating OCCs. We established that Akt and Notch3/Jagged1 pathways played a role in angiosphere formation and peritoneum invasion. In patients' ascites we found angiosphere-like structures and demonstrated in patients' specimens that tumoral EC displayed Akt activation, which supports the importance of Akt activation in ECs in OC. Additionally, we demonstrated the importance of FGF2, Pentraxin 3 (PTX3), PD-ECGF and TIMP-1 in angiosphere organization. Finally, we confirmed the role of Notch3/Jagged1 in OCC-EC crosstalk relating to OCC proliferation and during peritoneal invasion. Our results support the use of multicellular spheroids to better model tumoral and stromal interaction. Such models could help decipher the complex pathways playing critical roles in metastasis spread and predict tumor response to chemotherapy or anti-angiogenic treatment.


Assuntos
Neoplasias Ovarianas , Proteínas Proto-Oncogênicas c-akt , Feminino , Humanos , Ascite/patologia , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Proliferação de Células , Endotélio/metabolismo , Organoides/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resistencia a Medicamentos Antineoplásicos
11.
Cells ; 11(19)2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36230937

RESUMO

Alpha-2-macroglobulin (A2M) is a protease inhibitor that regulates extracellular matrix (ECM) stability and turnover. Here, we show that A2M is expressed by endothelial cells (ECs) from human eye choroid. We demonstrate that retinal pigment epithelium (RPE)-conditioned medium induces A2M expression specifically in ECs. Experiments using chemical inhibitors, blocking antibodies, and recombinant proteins revealed a key role of VEGF-A in RPE-mediated A2M induction in ECs. Furthermore, incubation of ECs with RPE-conditioned medium reduces matrix metalloproteinase-2 gelatinase activity of culture supernatants, which is partially restored after A2M knockdown in ECs. We propose that dysfunctional RPE or choroidal blood vessels, as observed in retinal diseases such as age-related macular degeneration, may disrupt the crosstalk mechanism we describe here leading to alterations in the homeostasis of choroidal ECM, Bruch's membrane and visual function.


Assuntos
alfa 2-Macroglobulinas Associadas à Gravidez , Epitélio Pigmentado da Retina , Anticorpos Bloqueadores , Meios de Cultivo Condicionados , Células Endoteliais , Feminino , Gelatinases , Humanos , Metaloproteinase 2 da Matriz , Gravidez , Inibidores de Proteases , Proteínas Recombinantes , Fatores de Transcrição , Fator A de Crescimento do Endotélio Vascular
12.
Lancet Child Adolesc Health ; 6(9): 654-666, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35963270

RESUMO

Paper 2 of the paediatric regenerative medicine Series focuses on recent advances in postnatal approaches. New gene, cell, and niche-based technologies and their combinations allow structural and functional reconstitution and simulation of complex postnatal cell, tissue, and organ hierarchies. Organoid and tissue engineering advances provide human disease models and novel treatments for both rare paediatric diseases and common diseases affecting all ages, such as COVID-19. Preclinical studies for gastrointestinal disorders are directed towards oesophageal replacement, short bowel syndrome, enteric neuropathy, biliary atresia, and chronic end-stage liver failure. For respiratory diseases, beside the first human tracheal replacement, more complex tissue engineering represents a promising solution to generate transplantable lungs. Genitourinary tissue replacement and expansion usually involve application of biocompatible scaffolds seeded with patient-derived cells. Gene and cell therapy approaches seem appropriate for rare paediatric diseases of the musculoskeletal system such as spinal muscular dystrophy, whereas congenital diseases of complex organs, such as the heart, continue to challenge new frontiers of regenerative medicine.


Assuntos
COVID-19 , Medicina Regenerativa , Criança , Humanos , Engenharia Tecidual
13.
Am J Pathol ; 192(7): 1001-1015, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35469796

RESUMO

Vascular injury is a well-established, disease-modifying factor in acute respiratory distress syndrome (ARDS) pathogenesis. Recently, coronavirus disease 2019 (COVID-19)-induced injury to the vascular compartment has been linked to complement activation, microvascular thrombosis, and dysregulated immune responses. This study sought to assess whether aberrant vascular activation in this prothrombotic context was associated with the induction of necroptotic vascular cell death. To achieve this, proteomic analysis was performed on blood samples from COVID-19 subjects at distinct time points during ARDS pathogenesis (hospitalized at risk, N = 59; ARDS, N = 31; and recovery, N = 12). Assessment of circulating vascular markers in the at-risk cohort revealed a signature of low vascular protein abundance that tracked with low platelet levels and increased mortality. This signature was replicated in the ARDS cohort and correlated with increased plasma angiopoietin 2 levels. COVID-19 ARDS lung autopsy immunostaining confirmed a link between vascular injury (angiopoietin 2) and platelet-rich microthrombi (CD61) and induction of necrotic cell death [phosphorylated mixed lineage kinase domain-like (pMLKL)]. Among recovery subjects, the vascular signature identified patients with poor functional outcomes. Taken together, this vascular injury signature was associated with low platelet levels and increased mortality and can be used to identify ARDS patients most likely to benefit from vascular targeted therapies.


Assuntos
Angiopoietina-2 , COVID-19 , Necroptose , Síndrome do Desconforto Respiratório , Angiopoietina-2/metabolismo , COVID-19/complicações , Humanos , Proteômica , Síndrome do Desconforto Respiratório/virologia
14.
Cell Stem Cell ; 29(4): 593-609.e7, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35364013

RESUMO

The liver vascular network is patterned by sinusoidal and hepatocyte co-zonation. How intra-liver vessels acquire their hierarchical specialized functions is unknown. We study heterogeneity of hepatic vascular cells during mouse development through functional and single-cell RNA-sequencing. The acquisition of sinusoidal endothelial cell identity is initiated during early development and completed postnatally, originating from a pool of undifferentiated vascular progenitors at E12. The peri-natal induction of the transcription factor c-Maf is a critical switch for the sinusoidal identity determination. Endothelium-restricted deletion of c-Maf disrupts liver sinusoidal development, aberrantly expands postnatal liver hematopoiesis, promotes excessive postnatal sinusoidal proliferation, and aggravates liver pro-fibrotic sensitivity to chemical insult. Enforced c-Maf overexpression in generic human endothelial cells switches on a liver sinusoidal transcriptional program that maintains hepatocyte function. c-Maf represents an inducible intra-organotypic and niche-responsive molecular determinant of hepatic sinusoidal cell identity and lays the foundation for the strategies for vasculature-driven liver repair.


Assuntos
Capilares , Células Endoteliais , Animais , Endotélio , Fígado/patologia , Cirrose Hepática/patologia , Regeneração Hepática , Camundongos , Proteínas Proto-Oncogênicas c-maf
15.
Blood ; 139(10): 1433-1434, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35267008
16.
Nat Commun ; 13(1): 1584, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332125

RESUMO

Hematopoietic stem cells (HSCs) develop from hemogenic endothelium within embryonic arterial vessels such as the aorta of the aorta-gonad-mesonephros region (AGM). To identify the signals responsible for HSC formation, here we use single cell RNA-sequencing to simultaneously analyze the transcriptional profiles of AGM-derived cells transitioning from hemogenic endothelium to HSCs, and AGM-derived endothelial cells which provide signals sufficient to support HSC maturation and self-renewal. Pseudotemporal ordering reveals dynamics of gene expression during the hemogenic endothelium to HSC transition, identifying surface receptors specifically expressed on developing HSCs. Transcriptional profiling of niche endothelial cells identifies corresponding ligands, including those signaling to Notch receptors, VLA-4 integrin, and CXCR4, which, when integrated in an engineered platform, are sufficient to support the generation of engrafting HSCs. These studies provide a transcriptional map of the signaling interactions necessary for the development of HSCs and advance the goal of engineering HSCs for therapeutic applications.


Assuntos
Hemangioblastos , Transcriptoma , Gônadas , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Mesonefro
18.
Nat Cardiovasc Res ; 1: 882-899, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36713285

RESUMO

Current dogma dictates that during adulthood, endothelial cells (ECs) are locked in an immutable stable homeostatic state. By contrast, herein we show that maintenance of EC fate and function are linked and active processes, which depend on the constitutive cooperativity of only two ETS-transcription factors (TFs) ERG and Fli1. While deletion of either Fli1 or ERG manifest subtle vascular dysfunction, their combined genetic deletion in adult EC results in acute vasculopathy and multiorgan failure, due to loss of EC fate and integrity, hyperinflammation, and spontaneous thrombosis, leading to death. ERG and Fli1 co-deficiency cause rapid transcriptional silencing of pan- and organotypic vascular core genes, with dysregulation of inflammation and coagulation pathways. Vascular hyperinflammation leads to impaired hematopoiesis with myeloid skewing. Accordingly, enforced ERG and FLI1 expression in adult human mesenchymal stromal cells activates vascular programs and functionality enabling engraftment of perfusable vascular network. GWAS-analysis identified vascular diseases are associated with FLI1/Erg mutations. Constitutive expression of ERG and Fli1 uphold EC fate, physiological function, and resilience in adult vasculature; while their functional loss can contribute to systemic human diseases.

20.
Nat Cell Biol ; 24(1): 99-111, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34961794

RESUMO

Histone variants and the associated post-translational modifications that govern the stemness of haematopoietic stem cells (HSCs) and differentiation thereof into progenitors (HSPCs) have not been well defined. H3.3 is a replication-independent H3 histone variant in mammalian systems that is enriched at both H3K4me3- and H3K27me3-marked bivalent genes as well as H3K9me3-marked endogenous retroviral repeats. Here we show that H3.3, but not its chaperone Hira, prevents premature HSC exhaustion and differentiation into granulocyte-macrophage progenitors. H3.3-null HSPCs display reduced expression of stemness and lineage-specific genes with a predominant gain of H3K27me3 marks at their promoter regions. Concomitantly, loss of H3.3 leads to a reduction of H3K9me3 marks at endogenous retroviral repeats, opening up binding sites for the interferon regulatory factor family of transcription factors, allowing the survival of rare, persisting H3.3-null HSCs. We propose a model whereby H3.3 maintains adult HSC stemness by safeguarding the delicate interplay between H3K27me3 and H3K9me3 marks, enforcing chromatin adaptability.


Assuntos
Cromatina/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Histonas/metabolismo , Mielopoese/fisiologia , Animais , Linfócitos T CD8-Positivos/citologia , Proteínas de Ciclo Celular , Linhagem Celular , Granulócitos/citologia , Hematopoese/fisiologia , Chaperonas de Histonas , Células Endoteliais da Veia Umbilical Humana , Humanos , Macrófagos/citologia , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional/fisiologia , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...